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Abstract 

Presenting high school or college students with the mathematical description of billiards behavior in 
an elliptical domain will undoubtedly inspire them to tackle even more challenging problems over 
time. The development of the related algorithms will also give the students an excellent opportunity to 
consciously use suitable Computer Algebra Systems (CAS). In particular, the implementation of 
calculations in exact rational arithmetic and the management of integer numbers of arbitrarily large 
dimensions, with an appropriate CAS, will help the interested parties to discriminate some statements 
concerning the delicate issue of the possible periodicity of the trajectories generated by the 
subsequent reflections of the billiards on the boundaring ellipses. 

1. Introduction

The purpose of this article is to exactly describe orbits in an elliptical billiard, necessarily by using 
"rational formulae". The use of trigonometry is therefore excluded, in order not to run the risk of 
introducing irrational, non-algebraic, elements. The only tools allowed are then those of algebra and 
analytic geometry, accessible since from the first years of upper secondary school. 

The reflection of light rays inside ellipses is thoroughly investigated, with three different 
technological tools, GeoGebra, Maxima and Maple, in [1]. Much weight is given to the question of 
the periodicity of the trajectories generated by the successive reflections of light beams on the 
boundary of ellipses. However, only floating-point calculations are considered. Two vertices of an 
orbit in an ellipse are considered as the same one if "there is enough computational evidence" that 
some conditions of proximity are satisfied. One should not yield to the limitations of floating-point 
calculations but should only rely on exact results before endorsing his hypotheses. 

2. Preliminaries - Description of the problem

Speaking of billiards, it would be appropriate to use the language of dynamics and consider material 
marbles, perhaps point-like, which move freely, with constant speed, on the green cloth of a 
horizontal plane table, in a region bounded by a closed curve, and which bounce infinitely many 
times on the perfectly elastic edges of the region, with reflection angles equal to their incidence 
angles, without any loss of kinetic energy. 
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What matters are only the laws of reflection, therefore, in order not to have to make too 
many concessions with respect to reality, it is preferable to adopt the language of optics, surely 
simpler, with its fundamental laws, of a purely geometric nature, of the rectilinear propagation of 
light rays in a homogeneous medium, of their independence and of their reflection on a specular 
surface (or straight line). 

As a further simplification, it is useful to consider light rays as simple straight lines. It is of 
course a mathematical abstraction, chosen to facilitate reasoning, which allows to clearly represent 
experimental phenomena and devices: geometric lines, unlike light rays, have no thickness. 
Therefore, a convenient representation of the elliptical "billiard" is an ideal light ray which is 
reflected multiple times on the wall of a flat two-dimensional elliptical cavity. The sequence of 
incident and reflected rays will be called an "orbit". 
 In geometric language, the law of reflection is stated as follows: the angle of reflection is 
equal to the angle of incidence: r = i. The reflected and incident rays belong to a plane passing 
through the perpendicular (normal) straight line to the reflecting surface at the point of incidence, 
where they form equal angles with the normal line. If the incident ray coincides with the normal to 
the mirror, with an angle of incidence equal to zero, the reflected ray also forms a null reflection 
angle: the reflected ray coincides with the incident ray (normal incidence). This law also applies if 
the surface is curved. In this case the normal at the point of incidence is the perpendicular to the 
straight-line tangent to the surface at that point. 

I believe there is no school book of mathematics, or physics, which, at the appropriate stage, 
does not deal with the focal properties of conics, for light rays or their extensions that pass through 
the foci and whose trajectory is only subject to the laws of reflection. It is also well known that in 
an elliptical billiard table an orbit that passes through one focus after reflection also passes through 
the other focus and tends to get closer and closer to the major axis of the ellipse. Here we consider 
instead the neglected rays, those that do not pass through the foci. 
 
3. The incident ray 
 
A light ray, without thickness, with the properties of a Euclidean geometric straight line, is 
projected inside a flat two-dimensional elliptical cavity through a hole, represented by a known 
point Pj = (xj , yj) of an ellipse E , which delimits the cavity and whose equation is: 
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The light ray hits the inner wall of the elliptical cavity at a point Pf = (xf , yf), necessarily 
different from Pj = (xj , yj). The direction of the light ray can be represented by a non-identically null 
vector vj = (vjx , vjy). 

The equation of the straight line  s  representing  the light ray,  passing  through  the  point Pj 

= (xj , yj) of the ellipse E  with direction vj = (vjx , vjy), can be written, in implicit form, in this way: 
0)()( =−⋅−−⋅ jjjj xxvyyv

yx
 . 

The algebraic calculations necessary to obtain the second intersection  Pf   of the straight line  
s  with the ellipse E  are lengthy and convoluted, so much so that one can feel discouraged in 
attempting to bring them to an end. Some steps are really challenging. The complexity of the 
calculations, however, represents an excellent opportunity to enable students to consciously use an 
appropriate CAS, in a context that is not artificial and useless but indispensable and decisive, and 
can also stimulate individual or team competitions among students to get to the result. 
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The coordinates of the point Pf , where the straight line  s  intersects the ellipse E  are then: 
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In a comparable form, the previous formulae were also used in [2]. 
If one sets:  
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named Bvj the following matrix, function only of a, b and of vj  = (vjx , vjy):  

Bvj = 
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one can easily verify the relation:  
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which can be concisely written like this:  
Pf  = Bvj Pj  , 

which abridges the formulae (1.a), (1.b). 
The elements of Bvj depend only on the orientation chosen for the vector vj = (vjx , vjy) but not 

on its direction or its magnitude: the elements are in fact invariant under the simultaneous exchange 
of sign of both components of vj  or by their multiplication by an arbitrary factor k, because both the 
numerators and the denominators of the fractions defining the elements of Bvj are all homogeneous 
polynomials of the 2nd degree in the components of vj . 

One can easily verify that Bvj is an involutory matrix: 

Bvj Bvj = 







10
01

 = I2 , 

having denoted by I2 the 2×2 identity matrix. 
The correspondence established between the points Pj  and Pf  of the ellipse is an involutory 

correspondence: if, with a chosen direction vj , a point Pf  corresponds to a point Pj , when the same 
direction vj is maintained, the point Pj  corresponds to the point Pf . In fact:  

Bvj Pf   = Bvj (Bvj Pj ) = Bvj Bvj Pj  = I2 Pj  = Pj  , 
then: Pf   = Bvj Pj   and Pj  = Bvj Pf   . 
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4. The reflected ray 
 
To the direction vj = (vjx , vjy) of the incident ray, that is to the direction of the straight line  s,  it is 
now necessary to match the direction vf  = (vf x, vf y) of the straight line which stands for the reflected 
ray going through the point Pf  = (xf , yf), already found out by means of Pj  and vj . 

By means of the symmetry properties of vf   and vj  with respect to the straight line p 
perpendicular, in the point Pf  = (xf , yf), to the tangent line t to the ellipse in the same point Pf  = (xf , 
yf), the direction vf  = (vf x, vf y) of the reflected ray is established by the following formulae: 
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In a comparable form, the previous formulae were also used in [2]. 
If one sets: 
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named RPf the following matrix, function only of the point Pf  = (xf , yf):  
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one can easily verify the relation:  
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which can be concisely written like this:  

vf  = RPf vj ,  
which abridges the formulae (2.a), (2.b). 

The elements of RPf depend only on the point Pf  but not at all on the vector vj = (vjx , vjy): in 
fact the matrix RPf produces the desired effect whatever the vector vj  assigned. 
 One can easily verify that, like Bvj , also RPf is an involutory matrix:  

RPf·RPf = 







10
01

 = I2 . 
 

The correspondence established between the directions of the vectors vj  and vf  is an 
involutory correspondence: if, for a chosen bounce point Pf  = (xf , yf), vf  is a vector with the direction 
of the ray into which an incident ray with the direction vj  is reflected, changing the roles, vj  is, 
reciprocally, a vector with the direction of the ray into which an incident ray with the direction vf   is 
reflected. In fact:  
 RPf vf  = RPf (RPf vj) = RPf RPf vj = I2 vj = vj ,  
then: vf  = RPf vj  and  vj = RPf vf  . 
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5. The orbit 
 
The procedure to follow to trace an orbit in an elliptical billiard is by now well defined. 

Chosen Pj  = (xj , yj) and vj = (vjx , vjy), one easily determines Pf  = (xf , yf):  
Pf   = Bvj Pj  .  

Then the direction of the reflected ray vf  = (vf x, vf y) is also determined:  
vf  = RPf vj .  

The procedure is then iterated by taking Pf  as a new Pj and vf  as a new vj . Practically, 
however, it is more convenient to chose two points on the ellipse E , to denote them Pj  and Pf  , and 
then to define vj = (vjx , vjy) = fjPP  , that is to define vjx  = xf  - xj and vjy  = yf  - yj . 

It is fitting to express the algorithm in a formal way. Given the initial values P0 = (x0 , y0) and 
v0 = (v0x , v0y), for n = 0, 1, 2, … , the orbit in the elliptical billiard is described by the coupled sequence:  
 Pn+1 = Bvn Pn  , (3.a)  
  vn+1 = RPn+1 vn . (3.b) 
 
6. The rational character of the formulae 
 
For rational lengths of the semi-axes a and b of the ellipse E , in particular, and also for values of a 
and b which give rational a² and b², the above formulae are wholly rational. Therefore they carry on 
the numerical character of P0  and v0 . In particular, if the point P0 (x0 , y0) of the ellipse E  is rational 
and also the vector v0 (v0x , v0y), which represents the direction of the light ray that entered the ellipse 
from the point P0, is rational, then P1 = Bv0 P0 and v1 = RP1 v0 are rational and consequently all the 
points Pn  and all the vectors vn  are rational: all the points touched by the orbit on the ellipse E  and 
the directions of all incident and reflected light rays are rational. The same qualitative property is 
maintained if some elements in P0  and v0  are algebraic or transcendental irrational numbers: the 
rational formulae carry on the algebraic or transcendental irrational character of P0  and v0 . 
 
7. The implementation of the algorithm 
 
The technological tool chosen to carry out this study is the CAS Derive™ 6. It was developed by 
Soft Warehouse in Honolulu, Hawaii. The first release was in 1988 for DOS. Subsequently owned 
by Texas Instruments, but Derive was discontinued on June 29, 2007 [3]. The last and definitive 
version is Derive 6.1 for Windows. Despite being discontinued, Derive 6.1 can still be found and 
downloaded for free from a Web search [4]. The author also easily installed it on a 32-bit PC 
running Windows 10. Furthermore, the interested reader can find and download a treasure trove of 
very useful material from the International Derive User Group site [5]. 

By default, Derive uses its exact precision mode and rational notation, that is, it displays 
results using integers, fractions, and symbols, for irrational constants, such as e or π , and radicals, 
such as m  for a square root. In relation to the purposes of this article, the most interesting feature 
of Derive is its ability to perform calculations in exact rational arithmetic, that is its capability to 
manage integers of arbitrarily large size by allocating them memory space dynamically, using as 
many bytes as needed for each number. Fractions can then be handled as such, without replacing 
them with rounded decimal values. All required rational values can be calculated exactly. 
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The exact results will only be truncated, to a suitable number of digits, for the purpose of 
their graphical representation. In other words, all results are rounded after the calculations and not 
before or during them, as inevitably happens when using only floating-point numbers.  

A limitation of Derive, like comparable CAS, is the amount of the globally available 
memory, but this is usually not a problem, even with ordinary computers.  

The algorithm implemented in Derive to plot the orbits in an elliptical billiard is presented in 
Figure 1. It faithfully conforms to the formulae (1.a), (1.b), (2.a) and (2.b). The recurring procedure 
P(n) must obviously be preceded by the assignments of the numeric values to the semi-axes of the 
ellipse and of the initial values to the variables, denoted by x0, y0, v0x and v0y . After having assigned 
the desired initial values to the four variables, then, for each choice of the index k, the 
"simplification" of the recurring procedure P(n) gives the coordinates of the k-th point of the orbit.  

In order to calculate the coordinates of a vertex, the procedure retraces the coordinates of all 
the previous vertices, from the beginning: this time-consuming choice protects against mistakes and 
inattention in the assignment of initial or intermediate values. Moreover, if the results grow too 
quickly, it can be difficult to do reassignments by hand, while the algorithm does it very well on its 
own, one just needs to be patient. It is the price to pay to achieve exact results. From my point of 
view, time of computation is not a factor which needs to be taken into consideration. The task can 
be distributed among all the students of a class, assigning to each of them a different iteration "k". 
Then, the students can contribute with their own results, in a simplified portable form which will be 
dealt with later (the true points P(n) will be substituted with more manageable rational points Q(n) 
extremely near to them and almost indistinguishable from them). The teacher collates all the points 
Q(n) in a single file in order to obtain the complete graphical representation of the orbit in the 
ellipse, as shown in Figure 3. 
 
 
P(n) := 
  Prog 
    n := 0 
    xj := x0 
    yj := y0 
    P(n) := [x0, y0] 
    vjx := v0x 
    vjy := v0y 
    Loop 
      If n = k 
         RETURN P(n) 
      xf := ((a^2·vjy^2 - b^2·vjx^2)·xj + (- 2·a^2·vjx·vjy)·yj)/(a^2·vjy^2 + b^2·vjx^2) 
      yf := ((- 2·b^2·vjx·vjy)·xj - (a^2·vjy^2 - b^2·vjx^2)·yj)/(a^2·vjy^2 + b^2·vjx^2) 
      P(n) := [xf, yf] 
      vfx := (a^4·yf^2 - b^4·xf^2)·(xf - xj) + 2·a^2·b^2·xf·yf·(yj - yf) 
      vfy := (a^4·yf^2 - b^4·xf^2)·(yj - yf) + 2·a^2·b^2·xf·yf·(xj - xf) 
      xj := xf 
      yj := yf 
      vjx := vfx 
      vjy := vfy 
      n := n + 1  
Figure 1. Core of the procedure that allows to trace orbits in an elliptical billiard, by means of 
rational formulae, implemented in Derive. See [S1] ABeJMT_1. 
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One may observe that in the formulae (1.a), (1.b), (2.a) and (2.b) there are some repetitive 
calculations. The recurring procedure P(n) can be rendered more efficient by assigning the result of 
the repetitive calculations to temporary variables and then use their values when needed. So, in each 
cycle of the loop, a number of unnecessary operations are spared. 

The modified algorithm, implemented in Derive, is presented in Figure 2. 

P(n) := 
  Prog 
   n := 0 

    xj := x0 
    yj := y0 
    P(n) := [x0, y0] 
    vjx := v0x 
    vjy := v0y 
    a2 := a^2 
    a4 := a2^2 
    b2 := b^2 
    b4 := b2^2 
    da2b2 := 2·a2·b2 
    Loop 
      If n = k 

 RETURN P(n) 
      vjx2 := vjx^2 
      vjy2 := vjy^2 

 coeff1 := a2·vjy2 - b2·vjx2 
      coeff2 := - 2·vjx·vjy 
      den := a2·vjy2 + b2·vjx2 
      xf := (coeff1·xj + coeff2·a2·yj)/den 
      yf := (- coeff1·yj + coeff2·b2·xj)/den 
      P(n) := [xf, yf] 
      coeff3 := a4·yf^2 - b4·xf^2 
      coeff4 := da2b2·xf·yf 
      vfx := coeff3·(xf - xj) + coeff4·(yj - yf) 
      vfy := coeff3·(yj - yf) + coeff4·(xj - xf) 
      xj := xf 
      yj := yf 
      vjx := vfx 
      vjy := vfy 
      n := n + 1 

Figure 2. Implementation of the procedure that traces orbits in an elliptical billiard, with rational 
formulae, in Derive, where duplicate repetitive operations are avoided as much as possible. If one 
has installed Derive. See [S2] ABeJMT_2.  

8. A practical case
For brevity sake only one example is worked out, similar to the Case 4.1 investigated in [1]. 

The equation of the contour of the chosen elliptical billiard is: 
20·x² + 60·y² = 45 , 

where the semi-axes of the ellipse are:  a = 2
3  and b = 2

3  . 
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The chosen starting points are:  
P0 = ( 4

33− , 4
3− ) ,   P1 = ( 2

3 , 0) ,  
so that the initial values of the variables for the algorithm are all algebraic numbers:  

x0 = 4
33−  ,   y0 = 4

3−  ,   v0x = ( )324
3 +  ,   v0y = 4

3  .  
The obtained orbit is plotted with Derive in Figure 3.  

As an example, for the vertex P(12) the algorithm implemented in Derive gives:  
P(12) = [ ]33
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where: h12x  = 46079347323825811716885760381836017418     ,  
 l12x  = 119819524084540990196110259805521717641    ,  
 m12x  = 138800698089762041778377411654839156155   ,  
 n12x  = 479278096338163960784441039222086870564    ,  
 h12y  = 93586129690918790287635648301246982922      ,  
 l12y  = 119819524084540990196110259805521717641     ,  
 m12y  = 22780603625739556977037462653717593065     ,  
 n12y  = 479278096338163960784441039222086870564    .  
Even though it happens that: l12y  = l12x  ,  n12y  =  n12x  , this is not to be expected for other vertices.  

In order to verify that P(12) ∈ E , that is to verify that 20·xP(12)² + 60·yP(12)² = 45, one expands:  
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The sum of the double products gives:  
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and it is easy to verify with Derive itself that:  

- h12x·m12x + 3·h12y·m12y = 0 .  
The sums of the similar terms are:  
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At last it is easy to verify with Derive itself that:  
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which proves that P(12) ∈ E  exactly! 
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Figure 3. Orbit in an ellipse with semi-axes a = 2

3 , b = 2
3 and equation 20·x² + 60·y² = 45, built 

with starting points P0 = ( 4
33− , 4

3− ) and P1 = ( 2
3 , 0) and consequently v0 ( ( )324

3 + , 4
3 ). The orbit 

is plotted with Derive. In the orbit, beyond P0 there are 47 other vertices. Subsequent vertices are 
nearly graphically indistinguishable from the first 48 vertices already plotted and the orbit gives the 
impression of being closed on itself, but this is misleading. See [S3] ABeJMT_3 . 
 
 
9. The number of ciphers of the vertices of the trajectory 
 
As anticipated, there is a price to pay in order to achieve exact results. In the case of the above 
worked out example, for instance, the output of the algorithm implemented in Derive for the vertex 
P(141), which exactly satisfies the equation of the ellipse, appears structured in the following form:  
P(141) = [ ]33,

y

y
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y

rx

x

ix

x

r n
m

yl
h

yn
m

xl
h

x ssss ++  ;  sxr , sxi , syr , syi = + / - ;  hx , lx , mx , nx , hy , ly , my , ny > 0 ; 
 
where the parameters hx , lx , mx , nx , hy , ly , my , ny are integer numbers with too many ciphers to be 
reproduced here. The parameters and the signs sxr , sxi , syr , syi are described in the following tables: 
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Sign value Sign value 
sxr + syr - 
sxi - syi -  
Parameter number of ciphers Parameter number of ciphers 
hx 6258 hy 6258 
lx 6261 ly 6260 
mx 6260 my 6260 
nx 6260 ny 6260  

The points Pn generated by the algorithm all exactly satisfy the equation of the ellipse. It is 
this property that ensures that the orbits are accurate. The algorithm proceeds using exclusively the 
exact points Pn . Taking into account graphical representations, however, it is not necessary to use 
the exact points Pn , one can resort to replacing them with their best rational approximations, which 
will be called Qn and are much more parsimonious in terms of their digit numbers. 

Technically, with Derive, once an exact point Pn has been determined, its best rational 
approximation is obtained with the instruction "Qn := APPROX(Pn)" and the commands 
SIMPLIFY, BASIC or the keys "Ctrl + Enter". 

As an example, the best rational approximation of P12 is Q12 = [ ]6665046
5754503

4714824
551801 ,−−  . The

measure of the goodness of the approximation can be appreciated noting that:  
20·xQ12² + 60·yQ12² - 45 = 9406464707995376857641558

076851522276152  { 1.077694655·10-11 , 
and that:  

APPROX(P12 - Q12) = [- 2.5958118439491633652·10-13, 2.2598496772509567904·10-13] . 
As another example, the best rational approximation of  P141  is  Q141 =  [-7074989/5424792, 

-508207/1187916] . The goodness of the approximation can be appreciated noting that: 
20·xQ141² + 60·yQ141² - 45 = - 98489588360037209666271

9751160916055 { - 4.441868815·10-11 .
It would not be practicable to present tables with the coordinates of the exact points Pn but it 

is easy to give tables for their rational approximations Qn. For reasons of space, we urge the reader 
to consult the Supplementary Electronic Materials, where the coordinates of the points Qn for n = 0 
to n = 100 are presented. Given are also the values of the polynomial  Q(x, y) = 20·x² + 60·y² - 45 , 
whose order of magnitude are typically 10-12, 10-11 or 10-10, proof of the proximity of the points Qn 
to the contour of the considered elliptical billiard, whose equation is  20·x² + 60·y² = 45 . 

10. The question of the periodicity of the trajectory

As stated in [1], one finds out that the point P47 is the first vertex of the orbit which falls in the near 
proximity of the initial vertex, namely the point P0 , from which it is almost indistinguishable. In 
fact, the Euclidean distance of the two points is very small:  

d(P47 , P0) = √((xP47 - xP0 )² + (yP47 - yP0 )²) = √((167967/96941857)² + (41303/23774278)²) ,  
which, truncated to 20 decimal places, gives:  

d(P47 , P0) { 0.00245363083189749328 . 
This property will be indicated by the notation P47 ≈ P0 . 
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Also, the Euclidean distance of their rational substitutes, Q0 = [- 1091609/840321, 
- 489061/1129438] and Q47 = [- 1411374/1085029, - 945702/2192803], is negligible: 

d(Q47 , Q0) = √((xQ47 - xQ0 )² + (yQ47 - yQ0 )²) , 
d(Q47 , Q0) = √((1579789393/911772654309)² + (4302652507/2476635034714)²) , 

which, truncated to 20 decimal places, gives:  d(Q47 , Q0) { 0.00245363083189778905 .  
As before, the fact will be indicated by the notation Q47 ≈ Q0 . It is worth noting that d(P47 , P0) 
coincides with d(Q47 , Q0) up to the 15th decimal place. The subsequent points which fall in the near 
proximity of the starting point P0 are P94 and P141: P94 ≈ P47 ≈ P0, then P141 ≈ P94 ≈ P47 ≈ P0 . 

In turn, the vertices which follow the point P47 fall in the near proximity of the vertices 
which follow the starting point P0. It happens in fact that P48 ≈ P1 , P49 ≈ P2 , P50 ≈ P3 and so on:  
d(P48 , P1) = √((- 900842143·10-15/5)² + (- 4244625531·10-13)²) { 0.00042446259133736742502 ,  
d(P49 , P2) = √((109145033·10-8/625)² + (1741644141·10-12)²) { 0.0024663656866721582463 ,  
d(P50 , P3) = √((- 1431872129·10-11/5)² + (980930373·10-11/5)²) { 0.0034713007305509626617 .  

Figure 4. Orbit in an ellipse with semi-axes a = 2
3 , b = 2

3 and equation 20·x² + 60·y² = 45, built 

with starting points P0 = ( 4
33− , 4

3− ) and P1 = ( 2
3 , 0), like in Figure 3. The orbit is plotted with 

Derive. In the orbit, beyond P0 there are 94 other vertices. In pale blue are the rays connecting the 
vertices from P0 to P47, in purple are the rays connecting the vertices from P47 to P94.  See [S4] 
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ABeJMT_4. In the Supplementary Electronic Materials, [S6], the reader will find tables with the 
differences of the coordinates of other pairs of neighbouring true points Pn . Taking into account the 
quadrants in which the points Pn fall and the signs of the differences of the corresponding 
coordinates of selected pairs of points Pn , a meticulous analysis shows that, counterclockwise, for 
any pair of nearly coinciding vertices P47+n ≈ Pn , the vertices P47+n not only do not overlap the 
points Pn but lag a little behind them. The orbit is therefore only quasi-periodic: it seems to repeat 
itself but, with each revolution, it stays behind a little bit, even though, graphically, that 
characteristic is not easy to observe. The sequence of incident and reflected rays which connect the 
consecutive points from P0 to P47 constitutes a first “almost closed in on itself” cycle. Similarly, the 
sequence of rays connecting the consecutive points from P47 to P94 constitutes a second such cycle. 
Using different colors for the two consecutive cycles, as in Figure 4, helps to visualize the 
precession-like phenomenon. 

It would be interesting to find out if the orbit can finally close on itself, and after how many 
revolutions, but obviously a very powerful computer would be needed. 
 
11. A completely rational example 
 

If, with semi-axes a = 40 and b = 30, the equation of the contour of the elliptical billiard is:  

1
9001600

22

=+
yx  , 

 
and the chosen starting point on the ellipse is:  

P0 = (-32, -18) ,  
and the starting direction is:  

v0 = (236816, 11958687) ,  
than the initial values of the variables for the algorithm are all rational numbers:  

x0 = -32 ,   y0 = -18 ,   v0x = 236816 ,   v0y = 11958687 .  
The graphical representation of the orbit obtained with these initial rational values is like the 

one shown in Figure 3. The hyperlink to the Derive Worksheet is [S5] ABeJMT_5.   
 
12. Concluding remarks 
 
Failure to exploit all available resources can lead to false conclusions. Is it true that if there exists a 
closed polygon inscribed in an ellipse and circumscribing a confocal ellipse then there are infinitely 
many closed polygons which behave like the original one (the famous Poncelet's Closure Theorem 
[6]) but non-trivial numerical examples are nowhere to be found in the literature. I would be pleased 
to find one. I still consider this an open line of research and hope that some teachers will find the 
material presented here appropriate to inspire their brightest high school and college students to take 
up the challenge.  
 
13. Supplementary Electronic Materials  
[S1] Derive file, ABeJMT_1. 
[S2] Derive file, ABeJMT_2. 
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https://ejmt.mathandtech.org/AB_June_2023/ABeJMT_1.dfw
https://ejmt.mathandtech.org/AB_June_2023/ABeJMT_2.dfw


[S3] Derive file, ABeJMT_3. 
[S4] Derive file, ABeJMT_4. 
[S5] Derive file, ABeJMT_5. 
[S6] TABLES for Light Rays Reflected inside Ellipses.pdf. 
[S7] Mathematica Note file, gl_gorni.nb. 
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